Hemispherical variations in seismic velocity at the top of the Earth's inner core
FENGLIN NIU AND LIANXING WEN

Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals—observed on both global seismograph stations and several regional seismic networks—are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40° E to 180° E) compared to those that sample the 'western hemisphere' (180° W to 40° E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher

Nature 410, 1081 - 1084 (2001) © Macmillan Publishers Ltd.


Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data
ALESSANDRO M. FORTE AND JERRY X. MITROVICA

Surface geophysical data that are related to the process of thermal convection in the Earth's mantle provide constraints on the rheological properties and density structure of the mantle. We show that these convection-related data imply the existence of a region of very high effective viscosity near 2,000 km depth. This inference is obtained using a viscous-flow model based on recent high-resolution seismic models of three-dimensional structure in the mantle. The high-viscosity layer near 2,000 km depth results in a re-organization of flow from short to long horizontal length scales, which agrees with seismic tomographic observations of very long wavelength structures in the deep mantle. The high-viscosity region also strongly suppresses flow-induced deformation and convective mixing in the deep mantle. Here we predict compositional and thermal heterogeneity in this region, using viscous-flow calculations based on the new viscosity profile, together with independent mineral physics data. These maps are consistent with the anti-correlation of anomalies in seismic shear and bulk sound velocity in the deep mantle. The maps also show that mega-plumes in the lower mantle below the central Pacific and Africa are, despite the presence of compositional heterogeneity, buoyant and actively upwelling structures.

Nature 410, 1049 - 1056 (2001) © Macmillan Publishers Ltd.

Índice das novidades científicas